Taylor's series (17/07)

Solution of ordinary differential Equations Single Step by Taylor's series method: Consider the first order differential Canation $\frac{dy}{dx}$ = $f(x, y)$, $f(x_0) = y_0$ If $y(\alpha)$ is the Solution, then $y(x) = y_0 + (x - x_0) y'_0 + (x - x_0) y''_0$ $+\frac{(2-20)^{2}}{2!}y_{0}^{11}+\cdots$ $10.27 \frac{1}{2} \frac{3}{2} \frac{3}{2} - 20$ $y(x) = y_0 + \frac{1}{1!}y'_0 + \frac{1}{2!}y''_0 + \frac{1}{3!}y''_0 + ...$ $9,06$ find the taylor's series method.
The values of y at $x = 0.1$ and 2:0.2 rament to four decimal f_{r} γ η η $\frac{dy}{dx}$ = χ^{2} y -1 , y (0) = 1. places Here $x_0 = 0$, $y_0 = 1$ ∞

 $g' = \chi^2 g - 1$, $g'_{\sigma} = 0 - 1 = -1$ $y'' = 2xy + x^2y'$ $y_0'' = 2a_0 y_0 + a_0^2 y_0'$ = 2 (0) (1) + (0) (-1) = 0 $y''' = 2(x y' + y) + x^2y'' + 2xy'$ $=4xy'+2y+7z'''.$ y_0''' = 4 $x_0 y_0'$ + 2 $y_0 + x_0^2 y_0''$ = 4 (0) + 2 (1) + 0 $y'' = 4 \int x y'' + y' J + 2y' + x^2 y'''$ $= 6y' + 6xy'' + x^2y'' + 2xy''$ $y_o'' = 6 y_o' + 6 x_o y_o'' + 8 x_o' y_o'' - 6$ Taylor's series of $g(x)$ about $20=0$ is finen by, $y(x) = y_0 + \frac{(x - x_0)}{1!}y_0' + \frac{(x - x_0)}{2!}y_0''$ $+\left(\frac{\gamma-{\chi_{0}}^3}{3!}\right)^3$ y_{0}^{11} + ... Here 2ζ = 0

 $y(x) = y_0 + 2(y_0' + 2^{2}y_0'' + \cdots)$

 $z + \pi (1 + \pi (1)) + \frac{\pi^2}{2!} (0) + \frac{\pi^3}{3!} (2)$ $+\frac{\alpha \dot{\mathbf{\mu}}}{\mathbf{\mu}} \left(-6 \right) + \cdots$ $y(x) = 1 - x + \frac{2x^3}{6} - \frac{6x^9}{24} + \cdots$ $y(c_1) = 1 - 0.1 + \frac{(0.1)^2}{2} - \frac{(0.1)^4}{4} + \cdots$ $1 - 0.1 + 0.0003 - 0.00025$ $y(0.1) = 0.90005$ $y(o.a) = 1 - 0.2 + \frac{(o.2)^2}{2} - \frac{(o.2)^4}{4}$ $= 1 - 0.2 + 0.0026 - 0.0004$ $y(0.2) = 0.8022$

Taylor's series (cont..)

2. By Taylor's series find y (0.1) g g $(g \cdot 2)$ given that $\frac{dy}{dx} = x^2 + y^2$ $y(0, 2)$ just the $\frac{d\pi}{d\alpha}$ decimal $bloces$ $y = \sqrt{9 \sin^2 \theta \sin^2 \theta}$
 $y' = \sqrt{2 + y^2}$, $y(0) = 1$ $\frac{1}{200}$ = 0 $\frac{1}{2}$ Yo = 1. $y' = x^2 + y^2$, $y_0' = x_0^2 + y_0^2 = o + 1 = 1$ $y'' = 2x + 2yy'$ $y_0^{11} = 2x + 2y_0 + 2(y_0^{1} = 2(0) + 2(1)(1))$ $90'' - 2$ $y''' = 2 + 2yy'' + 2y'y'$ $= 2 + 2yy'' + 2(y')^{2}$ $y_o^{\text{1}} = 2 + 2 y_o y_o^{\text{2}} + 2 (y_o^{\text{2}})^2$ $= 2 + 2(1)(2) + 2(1)^2$ $= 2 + 9 + 2 = 8$ $y'' = 274$
 $y'' + 299$
 $y''' + 49$
 (y'') $= 244^{11} + 69'9''$

 $y_o'' = 2y_o y_o''' + 6y_o' y_o''$ $=2(1)(8)+6(1)(2)$ $= 28$ $W^{1, k-1}$ $y = y(t) = y_0 + (x - x_0)y_0' + (x - x_0)y_0''$
+ $(x - x_0)y_0''y_0''' + ...$ Here $\frac{3!}{100}$ $Y = 1 + \frac{\pi}{1!} (1) + \frac{\pi^2}{2!} (2) + \frac{\pi^2}{3!} (8) + \frac{\pi^4}{4!} (28) + \cdots$ $9(0.1)$ = 1 + 0 1 + $\left(\frac{0.17^2}{2}(2) + \frac{(0.17^3)}{4}(8)\right)$ $+(6.1)^{4} (28) + \cdots$ $= 1 + 0.1 + 0.01 + 0.0013$ $+0.0001$ $[9(6.12 - 1.1114)]$ $1 + 0.2 + (0.2)^2$ (2)

Taylor's series (cont....(2))

3. Evaluate $y(o.1)$ and $y(o.2)$ Connect to four decimal places by Taylor's series method it $y(x)$ Satisfies $y' = xy + 1$, $y(0) = 1$. $Soly^2$ Given $y' = xy + 1$, $y(0) = 1$ Here $x_0 = 0$, $y_0 = 1$ $y' = \alpha y + 1$ $y_0' = \alpha y_0 + 1 = 1$ $4'' = x4' + y$ $y_0'' = x_0 y_0' + y_0 = 0 + 1 = 1$ $y''' = \alpha y'' + y' + y' = \alpha y'' + 2y'$ $y_0 = x y + 3$
 $y_0'' = x_0 y_0'' + 2 y_0' = 0 + 2x1 = 2$ $y_0'' = \frac{\alpha_0}{9} = \frac{4}{9} = \frac{4}{$ $y_0'' = 19$
 $y_0'' = 20$
 $y_0''' = 3(y_0' + 3y_0'') = 3(y_0 + 3y_0')$ $W \cdot k \cdot 7$ $y(x) = y_0 + Cx-x_0y_0' + Cx-x_0^2y_0''$ $+\left(\frac{\alpha-20}{3}\right)^3$ $y_0^{1/1}$ + $Y(x) = 1 + \frac{2i}{1!} \frac{1}{1!} (1) + \frac{x^2}{2!} (1) + \frac{x^3}{3!} (2)$

$$
+\frac{2^{4}}{4!}(3) + \cdots
$$
\n
$$
9(6 \cdot 1) = 1 + 0 \cdot 1 + \frac{(0 \cdot 1)^{2}}{2} (1) + \frac{(0 \cdot 1)^{3}}{6!} (2)
$$
\n
$$
+\frac{(0 \cdot 1)^{4}}{248} (3) + \cdots
$$
\n
$$
= 1 + 0 \cdot 1 + 0 \cdot 005 + 0 \cdot 0003
$$
\n
$$
9(6 \cdot 1) = 1 \cdot 1053
$$
\n
$$
9(6 \cdot 2) = 1 + 0 \cdot 2 + (0 \cdot 2)^{2} + \frac{(0 \cdot 2)^{3}}{3}
$$
\n
$$
+ (0 \cdot 2)^{4} + \cdots
$$
\n
$$
= 1 + 0 \cdot 2 + 0 \cdot 02 + 0 \cdot 0026
$$
\n
$$
+ 0 \cdot 0002
$$
\n
$$
9(6 \cdot 2) = 1 \cdot 2228
$$